de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Charge Control in Model Catalysis: The Decisive Role of the Oxide–Nanoparticle Interface

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84699

Schneider,  Wolf-Dieter
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21628

Heyde,  Markus
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schneider, W.-D., Heyde, M., & Freund, H.-J. (2018). Charge Control in Model Catalysis: The Decisive Role of the Oxide–Nanoparticle Interface. Chemistry – A European Journal, 24(10), 2317-2327. doi:10.1002/chem.201703169.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-E5D0-D
Zusammenfassung
In chemistry and physics the electronic charge on a species or material is one important determinant of its properties. In the present review the essential requirements for a model catalyst system suitable to study charge control are discussed. The ideal model catalyst for this purpose consists of a material system, which comprises a single crystal metal support, covered by an epitaxially grown ultrathin oxide film, and flat, two-dimensional nano-particles residing on this film. Several examples from the published literature are selected and presented, which illustrate various aspects of electron transport from the support to the nanoparticle and vice versa. Key experiments demonstrate charge control within such model catalysts and give direct evidence for a chemical reaction at the perimeter of Au nano-particles. The concepts derived from these studies are then taken a step further to see how they may be applied for bulk powder oxide supported nano-particles as they are frequently found in catalytically active materials.