de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe2

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons39255

Waldecker,  Lutz
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Stanford University;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons104552

Bertoni,  Roman
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Univ Rennes 1, CNRS, Institut de Physique de Rennes;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons138038

Vasileiadis,  Thomas
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons195530

Zahn,  Daniela
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21497

Ernstorfer,  Ralph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

PhysRevLett.119.036803.pdf
(Verlagsversion), 740KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Waldecker, L., Bertoni, R., Hübener, H., Brumme, T., Vasileiadis, T., Zahn, D., et al. (2017). Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe2. Physical Review Letters, 119(3): 036803. doi:10.1103/PhysRevLett.119.036803.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-C8DD-E
Zusammenfassung
We investigate the interactions of photoexcited carriers with lattice vibrations in thin films of the layered transition metal dichalcogenide (TMDC) WSe2. Employing femtosecond electron diffraction with monocrystalline samples and first-principles density functional theory calculations, we obtain a momentum-resolved picture of the energy transfer from excited electrons to phonons. The measured momentum-dependent phonon population dynamics are compared to first-principles calculations of the phonon linewidth and can be rationalized in terms of electronic phase-space arguments. The relaxation of excited states in the conduction band is dominated by intervalley scattering between Σ valleys and the emission of zone boundary phonons. Transiently, the momentum-dependent electron-phonon coupling leads to a nonthermal phonon distribution, which, on longer time scales, relaxes to a thermal distribution via electron-phonon and phonon-phonon collisions. Our results constitute a basis for monitoring and predicting out of equilibrium electrical and thermal transport properties for nanoscale applications of TMDCs.