de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Constructing Lexicons of Relational Phrases

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons137149

Grycner,  Adam
Databases and Information Systems, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grycner, A. (2017). Constructing Lexicons of Relational Phrases. PhD Thesis, Universität des Saarlandes, Saarbrücken.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-933B-1
Zusammenfassung
Knowledge Bases are one of the key components of Natural Language Understanding systems. For example, DBpedia, YAGO, and Wikidata capture and organize knowledge about named entities and relations between them, which is often crucial for tasks like Question Answering and Named Entity Disambiguation. While Knowledge Bases have good coverage of prominent entities, they are often limited with respect to relations. The goal of this thesis is to bridge this gap and automatically create lexicons of textual representations of relations, namely relational phrases. The lexicons should contain information about paraphrases, hierarchy, as well as semantic types of arguments of relational phrases. The thesis makes three main contributions. The first contribution addresses disambiguating relational phrases by aligning them with the WordNet dictionary. Moreover, the alignment allows imposing the WordNet hierarchy on the relational phrases. The second contribution proposes a method for graph construction of relations using Probabilistic Graphical Models. In addition, we apply this model to relation paraphrasing. The third contribution presents a method for constructing a lexicon of relational paraphrases with fine-grained semantic typing of arguments. This method is based on information from a multilingual parallel corpus.