de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio in Directed Graphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44182

Bringmann,  Karl
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1704.08122.pdf
(Preprint), 725KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bringmann, K., Dueholm Hansen, T., & Krinninger, S. (2017). Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio in Directed Graphs. Retrieved from http://arxiv.org/abs/1704.08122.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-89BC-3
Zusammenfassung
We study the problem of finding the cycle of minimum cost-to-time ratio in a directed graph with $ n $ nodes and $ m $ edges. This problem has a long history in combinatorial optimization and has recently seen interesting applications in the context of quantitative verification. We focus on strongly polynomial algorithms to cover the use-case where the weights are relatively large compared to the size of the graph. Our main result is an algorithm with running time $ \tilde O (m^{3/4} n^{3/2}) $, which gives the first improvement over Megiddo's $ \tilde O (n^3) $ algorithm [JACM'83] for sparse graphs. We further demonstrate how to obtain both an algorithm with running time $ n^3 / 2^{\Omega{(\sqrt{\log n})}} $ on general graphs and an algorithm with running time $ \tilde O (n) $ on constant treewidth graphs. To obtain our main result, we develop a parallel algorithm for negative cycle detection and single-source shortest paths that might be of independent interest.