de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons85190

Massué,  Cyriac
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogenous Reactions Max Planck Institute for Chemical Energy Conversion;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons104550

Pfeifer,  Verena
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons39194

Huang,  Xing
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons71845

Noack,  Johannes
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons32715

Tarasov,  Andrey
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons104326

Cap,  Sébastien
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogenous Reactions Max Planck Institute for Chemical Energy Conversion;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

2453519.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)
Zitation

Massué, C., Pfeifer, V., Huang, X., Noack, J., Tarasov, A., Cap, S., et al. (2017). High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts. ChemSusChem, 10(9), 1943-1957. doi:10.1002/cssc.201601817.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-7BDB-4
Zusammenfassung
The synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution reaction (OER) remains a major challenge for acidic water splitting on an industrial scale. To address this challenge, we obtained an outstanding high-performance OER catalyst by loading Ir on conductive antimony-doped tin oxide (ATO)-nanoparticles by a microwave (MW)-assisted hydrothermal route. The obtained Ir phase was identified by using XRD as amorphous (XRD-amorphous), highly hydrated IrIII/IV oxohydroxide. To identify chemical and structural features responsible for the high activity and exceptional stability under acidic OER conditions with loadings as low as 20 µgIrcm-2, we used stepwise thermal treatment to gradually alter the XRD-amorphous Ir phase by dehydroxylation and crystallization of IrO2. This resulted in dramatic depletion of OER performance, indicating that the outstanding electrocatalytic properties of the MW-produced IrIII/IV oxohydroxide are prominently linked to the nature of the produced Ir phase. This finding is in contrast with the often reported stable but poor OER performance of crystalline IrO2-based compounds produced through more classical calcination routes. Our investigation demonstrates the immense potential of Ir oxohydroxide- based OER electrocatalysts for stable high-current water electrolysis under acidic conditions.