de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The sense of balance in humans: Structural features of otoconia and their response to linear acceleration

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons126692

Kniep,  Rüdiger
Rüdiger Kniep, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126554

Wulfes,  Jana
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kniep, R., Zahn, D., Wulfes, J., & Walther, L. E. (2017). The sense of balance in humans: Structural features of otoconia and their response to linear acceleration. PLoS One, 12(4): e0175769, pp. 1-13. doi:10.1371/journal.pone.0175769.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-49CB-4
Zusammenfassung
We explored the functional role of individual otoconia within the otolith system of mammalians responsible for the detection of linear accelerations and head tilts in relation to the gravity vector. Details of the inner structure and the shape of intact human and artificial otoconia were studied using environmental scanning electron microscopy (ESEM), including decalcification by ethylenediaminetetraacetic acid (EDTA) to discriminate local calcium carbonate density. Considerable differences between the rhombohedral faces of human and artificial otoconia already indicate that the inner architecture of otoconia is not consistent with the point group -3m. This is clearly confirmed by decalcified otoconia specimen which are characterized by a non-centrosymmetric volume distribution of the compact 3+3 branches. This structural evidence for asymmetric mass distribution was further supported by light microscopy in combination with a high speed camera showing the movement of single otoconia specimen (artificial specimen) under gravitational influence within a viscous medium (artificial endolymph). Moreover, the response of otoconia to linear acceleration forces was investigated by particle dynamics simulations. Both, time-resolved microscopy and computer simulations of otoconia acceleration show that the dislocation of otoconia include significant rotational movement stemming from density asymmetry. Based on these findings, we suggest an otolith membrane expansion/stiffening mechanism for enhanced response to linear acceleration transmitted to the vestibular hair cells.