de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons204096

Orekondy,  Tribhuvanesh
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45383

Schiele,  Bernt
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44451

Fritz,  Mario
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1703.10660.pdf
(Preprint), 10MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Orekondy, T., Schiele, B., & Fritz, M. (2017). Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images. Retrieved from http://arxiv.org/abs/1703.10660.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-E65F-8
Zusammenfassung
With an increasing number of users sharing information online, privacy implications entailing such actions are a major concern. For explicit content, such as user profile or GPS data, devices (e.g. mobile phones) as well as web services (e.g. Facebook) offer to set privacy settings in order to enforce the users' privacy preferences. We propose the first approach that extends this concept to image content in the spirit of a Visual Privacy Advisor. First, we categorize personal information in images into 68 image attributes and collect a dataset, which allows us to train models that predict such information directly from images. Second, we run a user study to understand the privacy preferences of different users w.r.t. such attributes. Third, we propose models that predict user specific privacy score from images in order to enforce the users' privacy preferences. Our model is trained to predict the user specific privacy risk and even outperforms the judgment of the users, who often fail to follow their own privacy preferences on image data.