de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mapping and classifying molecules from a high-throughput structural database

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons183281

Ingram,  Teresa
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21325

Baldauf,  Carsten
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

art_10.1186_s13321-017-0192-4.pdf
(Verlagsversion), 16MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

De, S., Musil, F., Ingram, T., Baldauf, C., & Ceriotti, M. (2017). Mapping and classifying molecules from a high-throughput structural database. Journal of Cheminformatics, 9: 6. doi:10.1186/s13321-017-0192-4.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-EC86-D
Zusammenfassung
High-throughput computational materials design promises to greatly accelerate the process of discovering new materials and compounds, and of optimizing their properties. The large databases of structures and properties that result from computational searches, as well as the agglomeration of data of heterogeneous provenance leads to considerable challenges when it comes to navigating the database, representing its structure at a glance, understanding structure–property relations, eliminating duplicates and identifying inconsistencies. Here we present a case study, based on a data set of conformers of amino acids and dipeptides, of how machine-learning techniques can help addressing these issues. We will exploit a recently-developed strategy to define a metric between structures, and use it as the basis of both clustering and dimensionality reduction techniques—showing how these can help reveal structure–property relations, identify outliers and inconsistent structures, and rationalise how perturbations (e.g. binding of ions to the molecule) affect the stability of different conformers.