de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tuning Crystal Structures and Thermoelectric Properties through Al Doping in ReSi1.75

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons126891

Veremchuk,  Igor
Igor Veremchuk, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, F., Veremchuk, I., & Lidin, S. (2017). Tuning Crystal Structures and Thermoelectric Properties through Al Doping in ReSi1.75. European Journal of Inorganic Chemistry, 2017(1), 47-55. doi:10.1002/ejic.201600792.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002C-A6E1-6
Abstract
Binary rhenium silicide, ReSi1.75, and its aluminium-doped variants have been synthesized. Their crystal structures were characterized by X-ray diffraction, solved and refined through the use of superspace group models. The binary un-doped ReSi1.75 is a commensurate (supercell) structure of the previously well-known MoSi2-type structure. Al doping renders an incommensurate structure that was solved and refined, and reported for the first time. The thermoelectric properties of these compounds were also measured, including their electrical resistivities, thermal conductivities, and Seebeck coefficients. Compared with the commensurate structure of binary ReSi1.75, the Al-doped incommensurate phase exhibits lower lattice thermal conductivity, lower electrical resistivity, a higher Seebeck coefficient, and ultimately a much higher figure of merit (ZT). The cause of the structural incommensuration by Al doping was studied through the use of first-principle calculations. The relationship between the incommensurability and the improved thermoelectric properties is also discussed.