de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

On Fully Dynamic Graph Sparsifiers

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons199379

Krinninger,  Sebastian
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Abraham, I., Durfee, D., Koutis, I., Krinninger, S., & Peng, R. (2016). On Fully Dynamic Graph Sparsifiers. In FOCS 2016 (pp. 396-405). Piscataway, NJ: IEEE. doi:10.1109/FOCS.2016.44.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-52C6-A
Zusammenfassung
We initiate the study of dynamic algorithms for graph sparsification problems and obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take polylogarithmic time after each update in the graph. Our three main results are as follows. First, we give a fully dynamic algorithm for maintaining a $ (1 \pm \epsilon) $-spectral sparsifier with amortized update time $poly(\log{n}, \epsilon^{-1})$. Second, we give a fully dynamic algorithm for maintaining a $ (1 \pm \epsilon) $-cut sparsifier with \emph{worst-case} update time $poly(\log{n}, \epsilon^{-1})$. Both sparsifiers have size $ n \cdot poly(\log{n}, \epsilon^{-1})$. Third, we apply our dynamic sparsifier algorithm to obtain a fully dynamic algorithm for maintaining a $(1 + \epsilon)$-approximation to the value of the maximum flow in an unweighted, undirected, bipartite graph with amortized update time $poly(\log{n}, \epsilon^{-1})$.