Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Fully Dynamic Spanners with Worst-Case Update Time

MPG-Autoren
/persons/resource/persons199379

Krinninger,  Sebastian
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1606.07864.pdf
(Preprint), 528KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bodwin, G., & Krinninger, S. (2016). Fully Dynamic Spanners with Worst-Case Update Time. Retrieved from http://arxiv.org/abs/1606.07864.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-50FF-B
Zusammenfassung
An $\alpha$-spanner of a graph $ G $ is a subgraph $ H $ such that $ H $ preserves all distances of $ G $ within a factor of $ \alpha $. In this paper, we give fully dynamic algorithms for maintaining a spanner $ H $ of a graph $ G $ undergoing edge insertions and deletions with worst-case guarantees on the running time after each update. In particular, our algorithms maintain: (1) a $3$-spanner with $ \tilde O (n^{1+1/2}) $ edges with worst-case update time $ \tilde O (n^{3/4}) $, or (2) a $5$-spanner with $ \tilde O (n^{1+1/3}) $ edges with worst-case update time $ \tilde O (n^{5/9}) $. These size/stretch tradeoffs are best possible (up to logarithmic factors). They can be extended to the weighted setting at very minor cost. Our algorithms are randomized and correct with high probability against an oblivious adversary. We also further extend our techniques to construct a $5$-spanner with suboptimal size/stretch tradeoff, but improved worst-case update time. To the best of our knowledge, these are the first dynamic spanner algorithms with sublinear worst-case update time guarantees. Since it is known how to maintain a spanner using small amortized but large worst-case update time [Baswana et al. SODA'08], obtaining algorithms with strong worst-case bounds, as presented in this paper, seems to be the next natural step for this problem.