de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Natural Illumination from Multiple Materials Using Deep Learning

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons127690

Rematas,  Konstantinos
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45298

Ritschel,  Tobias
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44451

Fritz,  Mario
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1611.09325.pdf
(Preprint), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Georgoulis, S., Rematas, K., Ritschel, T., Fritz, M., Tuytelaars, T., & Van Gool, L. (2016). Natural Illumination from Multiple Materials Using Deep Learning. Retrieved from http://arxiv.org/abs/1611.09325.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-270F-0
Zusammenfassung
Recovering natural illumination from a single Low-Dynamic Range (LDR) image is a challenging task. To remedy this situation we exploit two properties often found in everyday images. First, images rarely show a single material, but rather multiple ones that all reflect the same illumination. However, the appearance of each material is observed only for some surface orientations, not all. Second, parts of the illumination are often directly observed in the background, without being affected by reflection. Typically, this directly observed part of the illumination is even smaller. We propose a deep Convolutional Neural Network (CNN) that combines prior knowledge about the statistics of illumination and reflectance with an input that makes explicit use of these two observations. Our approach maps multiple partial LDR material observations represented as reflectance maps and a background image to a spherical High-Dynamic Range (HDR) illumination map. For training and testing we propose a new data set comprising of synthetic and real images with multiple materials observed under the same illumination. Qualitative and quantitative evidence shows how both multi-material and using a background are essential to improve illumination estimations.