de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Quantitative method for the analysis of cell attachment using aligned scaffold structures

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons76197

Tian,  F.
Former Dept. Theory of Mesoscopic Phenomena, Max Planck Institute for Intelligent Systems, Max Planck Society;
Dept. New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75450

Estrada,  G. G.
Former Dept. Theory of Mesoscopic Phenomena, Max Planck Institute for Intelligent Systems, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Tian, F., Hosseinkhani, H., Estrada, G. G., & Kobayashi, H. (2007). Quantitative method for the analysis of cell attachment using aligned scaffold structures.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-44D7-0
Abstract
This paper presents a new quantitative method that evaluates the cell attachment affinity to aligned scaffold structures composed of poly (glycolic acid) PGA/collagen. The structures were fabricated by the electrospinning method. We analyzed the relationship between the number and length of attached cells to fibers of different diameters under different concentrations of PGA/collagen. The findings are three fold. Firstly, the fibers fabricated on the order of nano-scale significantly enhanced the number of attaching cells compared with those fibers fabricated on the order of micro-scale. Secondly, the cell morphology is affected by both the amount of collagen in PGA/collagen hybrid fibers and the cells adhesion affinity to fibers. Finally, PGA/collagen hybrid fibers on the range of 0.5 μm with a concentration of 67% collagen provided the best cell adhesion. This study provides an attractive technique to fabricate suitable diameters and collagen concentrations for tissue engineering applications.