de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The information of ambiguity

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons201161

Praxmeyer,  Ludmila
Optical Quantum Information Theory, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Praxmeyer, L., Stenholm, S., & Vitanov, N. V. (2009). The information of ambiguity. JOURNAL OF MODERN OPTICS, 56(10): PII 912447899, pp. 1205-1219. doi:10.1080/09500340903003321.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-6C2F-0
Zusammenfassung
The phase space characteristics of a quantum state are best captured by the Wigner distribution. This displays transparently the diagonality information of the density matrix. The complementary function offering transparently the off-diagonal elements is captured by a function called the S-function, or the ambiguity. In carrying the maximal information about the quantum coherences it represents the uncertainties or ambiguity of the diagonal information. Mathematically this is manifested in its role as the phase space moment generating function. Formally it complements the information in the Wigner function. These formal relations provide the starting point for the present investigations. As a measure of quantum uncertainties, ambiguity may be used to define a probability measure on the off-diagonality. The mathematical and physical consistency of this view is presented in this paper. For a pure state, we find the extraordinary result that such distributions are their own Fourier transforms. The physical interpretation of this distribution as a carrier of classical signal fuzziness suggests the introduction of heuristic approximations to the observational uncertainties. We illustrate the properties and interpretation of the ambiguity function by some specific examples. We find that for smooth, 'Gaussian-like' distributions, the heuristic considerations provide good approximations. On the other hand, representing quantum interferences, the ambiguity serves as the most positive probe for the ultimate quantum structures which have been called sub-Planckian. They are interesting because it has been argued that such structures are physically observable.