de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nonparaxial polarizers

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons200999

Aiello,  Andrea
Optical Quantum Information Theory, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons201126

Marquardt,  Christoph
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons201115

Leuchs,  Gerd
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Aiello, A., Marquardt, C., & Leuchs, G. (2009). Nonparaxial polarizers. OPTICS LETTERS, 34(20), 3160-3162.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-6BA3-1
Abstract
We develop a theoretical description for polarizers that goes beyond the paraxial approximation. By combining existing theories for fields with nonplanar wavefronts, we are able to derive a simple power series expansion expressing the electric field of a light beam after a polarizer as a linear function of the field and its spatial derivatives evaluated before the polarizer. The first few terms of such expansion are explicitly given, and their physical meaning is discussed. (C) 2009 Optical Society of America