de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Multi-pass Shack-Hartmann planeness test: monitoring thermal stress

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons201189

Schwider,  J.
Optical Design and Microoptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons201115

Leuchs,  G.
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Schwider, J., & Leuchs, G. (2010). Multi-pass Shack-Hartmann planeness test: monitoring thermal stress. OPTICS EXPRESS, 18(8), 8094-8106. doi:10.1364/OE.18.008094.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-6B13-3
Abstract
The multi-pass solution for surface measurements with the help of a Shack-Hartmann sensor (SHS) on the basis of a Fizeau cavity enables fast access to surface deviation data due to the high speed of the SHS and easy referencing of the measured data through difference measurements. The multi-pass solution described in a previous publication [J. Schwider, Opt. Express 16, 362 (2008)], provides highly sensitive measurements of small displacements caused by thermal non-equilibrium states of the test set up. Here, we want to demonstrate how a pulsed thermal load changes the surface geometry. In addition the temporal response for different plate materials is monitored through a fast wave front measurement with very high sensitivity. The thermal load close to a delta-function in time will be applied from the back-side of a plane plate by heating a small Peltier element with a heat impulse of known order of magnitude. The development of the surface deviation on the time axis can be monitored by storing a set of successive deviation pictures. (c) 2010 Optical Society of America