de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons201221

Vaibhav,  V.
Optical Quantum Information Theory, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vaibhav, V. (2011). Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data. JOURNAL OF COMPUTATIONAL PHYSICS, 230(8), 3205-3229. doi:10.1016/j.jcp.2011.01.024.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-69F9-D
Zusammenfassung
The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrodinger (NLS) equation, partial derivative(t)u + Lu - i chi vertical bar u vertical bar(2)u = 0 with L -i partial derivative(2)(x), and the equation obtained by letting L partial derivative(3)(x). The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness. (C) 2011 Elsevier Inc. All rights reserved.