English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dipole pulse theory: Maximizing the field amplitude from 4 pi focused laser pulses

MPS-Authors
/persons/resource/persons200999

Aiello,  Andrea
Optical Quantum Information Theory, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201085

Heugel,  Simon
4pi Photon Atom Coupling, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201115

Leuchs,  Gerd
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gonoskov, I., Aiello, A., Heugel, S., & Leuchs, G. (2012). Dipole pulse theory: Maximizing the field amplitude from 4 pi focused laser pulses. PHYSICAL REVIEW A, 86(5): 053836. doi:10.1103/PhysRevA.86.053836.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-6857-0
Abstract
We present a class of exact nonstationary solutions of Maxwell equations in vacuum from dipole pulse theory: electric and magnetic dipole pulses. These solutions can provide for a very efficient focusing of electromagnetic field and can be generated by 4 pi focusing systems, such as parabolic mirrors, by using radially polarized laser pulses with a suitable amplitude profile. The particular cases of a monochromatic dipole wave and a short dipole pulse with either quasi-Gaussian or Gaussian envelopes in the far-field region are analyzed and compared in detail. As a result, we propose how to increase the maximum field amplitude in the focus by properly shaping the temporal profile of the input laser pulses with given main wavelength and peak power.