de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Geometric spin Hall effect of light in tightly focused polarization-tailored light beams

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons201139

Neugebauer,  Martin
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons201008

Banzer,  Peter
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons201012

Bauer,  Thomas
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons201145

Orlov,  Sergej
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons201116

Lindlein,  Norbert
Optical Design and Microoptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons200999

Aiello,  Andrea
Optical Quantum Information Theory, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons201115

Leuchs,  Gerd
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Neugebauer, M., Banzer, P., Bauer, T., Orlov, S., Lindlein, N., Aiello, A., et al. (2014). Geometric spin Hall effect of light in tightly focused polarization-tailored light beams. PHYSICAL REVIEW A, 89(1): 013840. doi:10.1103/PhysRevA.89.013840.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-665D-5
Abstract
Recently, it was shown that a nonzero transverse angular momentum manifests itself in a polarization-dependent intensity shift of the barycenter of a paraxial light beam [Aiello et al., Phys. Rev. Lett. 103, 100401 (2009)]. The underlying effect is phenomenologically similar to the spin Hall effect of light but does not depend on the specific light-matter interaction and can be interpreted as a purely geometric effect. Thus, it was named the geometric spin Hall effect of light. Here, we experimentally investigate the appearance of this effect in tightly focused vector beams. We use an experimental nanoprobing technique in combination with a reconstruction algorithm to verify the relative shifts of the components of the electric energy density and the shift of the intensity in the focal plane. By that, we experimentally demonstrate the geometric spin Hall effect of light in a highly nonparaxial beam.