de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Which risk scenarios can drive the emergence of costly cooperation?

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons118585

Hagel,  Kristin
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons73064

Abou Chakra,  Maria
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons104390

Bauer,  Benedikt
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56973

Traulsen,  Arne
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)

srep19269.pdf
(Verlagsversion), 836KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hagel, K., Abou Chakra, M., Bauer, B., & Traulsen, A. (2016). Which risk scenarios can drive the emergence of costly cooperation? Scientific Reports, 6: 19269. Retrieved from http://dx.doi.org/10.1038/srep19269.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-0C35-7
Zusammenfassung
In collective risk dilemmas, cooperation prevents collective loss only when players contribute sufficiently. In these more complex variants of a social dilemma, the form of the risk curve is crucial and can strongly affect the feasibility of a cooperative outcome. The risk typically depends on the sum of all individual contributions. Here, we introduce a general approach to analyze the stabilization of cooperation under any decreasing risk curve and discuss how different risk curves affect cooperative outcomes. We show that the corresponding solutions can be reached by social learning or evolutionary dynamics. Furthermore, we extend our analysis to cases where individuals do not only care about their expected payoff, but also about the associated distribution of payoffs. This approach is an essential step to understand the effects of risk decay on cooperation.