de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Lattice dynamics calculations based on density-functional perturbation theory in real space

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons39373

Shang,  Honghui
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21413

Carbogno,  Christian
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22010

Rinke,  Patrick
Theory, Fritz Haber Institute, Max Planck Society;
COMP/Department of Applied Physics, Aalto University;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1610.03756.pdf
(Preprint), 3MB

1-s2.0-S0010465517300437-main.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shang, H., Carbogno, C., Rinke, P., & Scheffler, M. (2017). Lattice dynamics calculations based on density-functional perturbation theory in real space. Computer Physics Communications, 215, 26-46. doi:10.1016/j.cpc.2017.02.001.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-BC6D-E
Zusammenfassung
A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.