de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Interactive and Iterative Discovery of Entity Network Subgraphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons79525

Vreeken,  Jilles
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1608.03889.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wu, H., Sun, M., Vreeken, J., Tatti, N., North, C., & Ramakrishnan, N. (2016). Interactive and Iterative Discovery of Entity Network Subgraphs. Retrieved from http://arxiv.org/abs/1608.03889.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-A939-F
Zusammenfassung
Graph mining to extract interesting components has been studied in various guises, e.g., communities, dense subgraphs, cliques. However, most existing works are based on notions of frequency and connectivity and do not capture subjective interestingness from a user's viewpoint. Furthermore, existing approaches to mine graphs are not interactive and cannot incorporate user feedbacks in any natural manner. In this paper, we address these gaps by proposing a graph maximum entropy model to discover surprising connected subgraph patterns from entity graphs. This model is embedded in an interactive visualization framework to enable human-in-the-loop, model-guided data exploration. Using case studies on real datasets, we demonstrate how interactions between users and the maximum entropy model lead to faster and explainable conclusions.