English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optical imaging of individual biomolecules in densely packed clusters

MPS-Authors
/persons/resource/persons172959

Jungmann,  Ralf
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dai, M., Jungmann, R., & Yin, P. (2016). Optical imaging of individual biomolecules in densely packed clusters. Nature Nanotechnology, 11(9), 798-807. doi:10.1038/NNANO.2016.95.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-115A-4
Abstract
Recent advances in fluorescence super-resolution microscopy have allowed subcellular features and synthetic nanostructures down to 10-20 nm in size to be imaged. However, the direct optical observation of individual molecular targets (similar to 5 nm) in a densely packed biomolecular cluster remains a challenge. Here, we show that such discrete molecular imaging is possible using DNA-PAINT (points accumulation for imaging in nanoscale topography) a super-resolution fluorescence microscopy technique that exploits programmable transient oligonucleotide hybridization on synthetic DNA nanostructures. We examined the effects of a high photon count, high blinking statistics and an appropriate blinking duty cycle on imaging quality, and developed a software-based drift correction method that achieves <1 nm residual drift (root mean squared) over hours. This allowed us to image a densely packed triangular lattice pattern with similar to 5 nm point-to-point distance and to analyse the DNA origami structural offset with angstrom-level precision (2 A) from single-molecule studies. By combining the approach with multiplexed exchange-PAINT imaging, we further demonstrated an optical nanodisplay with 5 x 5 nm pixel size and three distinct colours with <1 nm cross-channel registration accuracy.