de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons136490

Zollhöfer,  Michael
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1604.06525.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

DeVito, Z., Mara, M., Zollhöfer, M., Bernstein, G., Ragan-Kelley, J., Theobalt, C., et al. (2016). Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging. Retrieved from http://arxiv.org/abs/1604.06525.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-9AA6-0
Zusammenfassung
Many graphics and vision problems are naturally expressed as optimizations with either linear or non-linear least squares objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance in interactive applications. We propose a new language, Opt (available under http://optlang.org), in which a user simply writes energy functions over image- or graph-structured unknowns, and a compiler automatically generates state-of-the-art GPU optimization kernels. The end result is a system in which real-world energy functions in graphics and vision applications are expressible in tens of lines of code. They compile directly into highly-optimized GPU solver implementations with performance competitive with the best published hand-tuned, application-specific GPU solvers, and 1-2 orders of magnitude beyond a general-purpose auto-generated solver.