de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Context-guided Diffusion for Label Propagation on Graphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1602.06439.pdf
(Preprint), 204KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kim, K. I., Tompkin, J., Pfister, H., & Theobalt, C. (2016). Context-guided Diffusion for Label Propagation on Graphs. Retrieved from http://arxiv.org/abs/1602.06439.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-9A84-9
Zusammenfassung
Existing approaches for diffusion on graphs, e.g., for label propagation, are mainly focused on isotropic diffusion, which is induced by the commonly-used graph Laplacian regularizer. Inspired by the success of diffusivity tensors for anisotropic diffusion in image processing, we presents anisotropic diffusion on graphs and the corresponding label propagation algorithm. We develop positive definite diffusivity operators on the vector bundles of Riemannian manifolds, and discretize them to diffusivity operators on graphs. This enables us to easily define new robust diffusivity operators which significantly improve semi-supervised learning performance over existing diffusion algorithms.