de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Visual Stability Prediction and Its Application to Manipulation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons85396

Li,  Wenbin
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44451

Fritz,  Mario
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1609.04861.pdf
(Preprint), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Li, W., Leonardis, A., & Fritz, M. (2016). Visual Stability Prediction and Its Application to Manipulation. Retrieved from http://arxiv.org/abs/1609.04861.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-972C-B
Zusammenfassung
Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. Developmental psychology has shown that such skills are acquired by infants from observations at a very early stage. In this paper, we contrast a more traditional approach of taking a model-based route with explicit 3D representations and physical simulation by an {\em end-to-end} approach that directly predicts stability from appearance. We ask the question if and to what extent and quality such a skill can directly be acquired in a data-driven way---bypassing the need for an explicit simulation at run-time. We present a learning-based approach based on simulated data that predicts stability of towers comprised of wooden blocks under different conditions and quantities related to the potential fall of the towers. We first evaluate the approach on synthetic data and compared the results to human judgments on the same stimuli. Further, we extend this approach to reason about future states of such towers that in turn enables successful stacking.