de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons118120

Becker,  Ruben
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44737

Karrenbauer,  Andreas
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons199379

Krinninger,  Sebastian
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons123371

Lenzen,  Christoph
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1607.05127v2
(Preprint), 809KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Becker, R., Karrenbauer, A., Krinninger, S., & Lenzen, C. (2016). Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models. Retrieved from http://arxiv.org/abs/1607.05127.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-8419-1
Zusammenfassung
We present a method for solving the transshipment problem - also known as uncapacitated minimum cost flow - up to a multiplicative error of $1 + \epsilon$ in undirected graphs with polynomially bounded integer edge weights using a tailored gradient descent algorithm. An important special case of the transshipment problem is the single-source shortest paths (SSSP) problem. Our gradient descent algorithm takes $O(\epsilon^{-3} \mathrm{polylog} n)$ iterations and in each iteration it needs to solve a variant of the transshipment problem up to a multiplicative error of $\mathrm{polylog} n$. In particular, this allows us to perform a single iteration by computing a solution on a sparse spanner of logarithmic stretch. As a consequence, we improve prior work by obtaining the following results: (1) RAM model: $(1+\epsilon)$-approximate transshipment in $\tilde{O}(\epsilon^{-3}(m + n^{1 + o(1)}))$ computational steps (leveraging a recent $O(m^{1+o(1)})$-step $O(1)$-approximation due to Sherman [2016]). (2) Multipass Streaming model: $(1 + \epsilon)$-approximate transshipment and SSSP using $\tilde{O}(n) $ space and $\tilde{O}(\epsilon^{-O(1)})$ passes. (3) Broadcast Congested Clique model: $(1 + \epsilon)$-approximate transshipment and SSSP using $\tilde{O}(\epsilon^{-O(1)})$ rounds. (4) Broadcast Congest model: $(1 + \epsilon)$-approximate SSSP using $\tilde{O}(\epsilon^{-O(1)}(\sqrt{n} + D))$ rounds, where $ D $ is the (hop) diameter of the network. The previous fastest algorithms for the last three models above leverage sparse hop sets. We bypass the hop set computation; using a spanner is sufficient in our method. The above bounds assume non-negative integer edge weights that are polynomially bounded in $n$; for general non-negative weights, running times scale with the logarithm of the maximum ratio between non-zero weights.