de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Real-time Joint Tracking of a Hand Manipulating an Object from RGB-D Input

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons79499

Sridhar,  Srinath
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons134216

Mueller,  Franziska
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons136490

Zollhöfer,  Michael
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons138534

Casas,  Dan
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons123219

Oulasvirta,  Antti
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

techreport_2016_4_001.pdf
(beliebiger Volltext), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sridhar, S., Mueller, F., Zollhöfer, M., Casas, D., Oulasvirta, A., & Theobalt, C.(2016). Real-time Joint Tracking of a Hand Manipulating an Object from RGB-D Input (MPI-I-2016-4-001). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-5510-A
Zusammenfassung
Real-time simultaneous tracking of hands manipulating and interacting with external objects has many potential applications in augmented reality, tangible computing, and wearable computing. However, due to dicult occlusions, fast motions, and uniform hand appearance, jointly tracking hand and object pose is more challenging than tracking either of the two separately. Many previous approaches resort to complex multi-camera setups to remedy the occlusion problem and often employ expensive segmentation and optimization steps which makes real-time tracking impossible. In this paper, we propose a real-time solution that uses a single commodity RGB-D camera. The core of our approach is a 3D articulated Gaussian mixture alignment strategy tailored to hand-object tracking that allows fast pose optimization. The alignment energy uses novel regularizers to address occlusions and hand-object contacts. For added robustness, we guide the optimization with discriminative part classication of the hand and segmentation of the object. We conducted extensive experiments on several existing datasets and introduce a new annotated hand-object dataset. Quantitative and qualitative results show the key advantages of our method: speed, accuracy, and robustness.