de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons180812

He,  Yang
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44237

Chiu,  Wei-Chen
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons180612

Keuper,  Margret
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44451

Fritz,  Mario
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1604.02388.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

He, Y., Chiu, W.-C., Keuper, M., & Fritz, M. (2016). RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling. Retrieved from http://arxiv.org/abs/1604.02388.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-063C-5
Zusammenfassung
Beyond the success in classification, neural networks have recently shown strong results on pixel-wise prediction tasks like image semantic segmentation on RGBD data. However, the commonly used deconvolutional layers for upsampling intermediate representations to the full-resolution output still show different failure modes, like imprecise segmentation boundaries and label mistakes in particular on large, weakly textured objects (e.g. fridge, whiteboard, door). We attribute these errors in part to the rigid way, current network aggregate information, that can be either too local (missing context) or too global (inaccurate boundaries). Therefore we propose a data-driven pooling layer that integrates with fully convolutional architectures and utilizes boundary detection from RGBD image segmentation approaches. We extend our approach to leverage region-level correspondences across images with an additional temporal pooling stage. We evaluate our approach on the NYU-Depth-V2 dataset comprised of indoor RGBD video sequences and compare it to various state-of-the-art baselines. Besides a general improvement over the state-of-the-art, our approach shows particularly good results in terms of accuracy of the predicted boundaries and in segmenting previously problematic classes.