de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

DeLight-Net: Decomposing Reflectance Maps into Specular Materials and Natural Illumination

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44451

Fritz,  Mario
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1603.08240.pdf
(Preprint), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Georgoulis, S., Rematas, K., Ritschel, T., Fritz, M., Van Gool, L., & Tuytelaars, T. (2016). DeLight-Net: Decomposing Reflectance Maps into Specular Materials and Natural Illumination. Retrieved from http://arxiv.org/abs/1603.08240.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-0595-7
Zusammenfassung
In this paper we are extracting surface reflectance and natural environmental illumination from a reflectance map, i.e. from a single 2D image of a sphere of one material under one illumination. This is a notoriously difficult problem, yet key to various re-rendering applications. With the recent advances in estimating reflectance maps from 2D images their further decomposition has become increasingly relevant. To this end, we propose a Convolutional Neural Network (CNN) architecture to reconstruct both material parameters (i.e. Phong) as well as illumination (i.e. high-resolution spherical illumination maps), that is solely trained on synthetic data. We demonstrate that decomposition of synthetic as well as real photographs of reflectance maps, both in High Dynamic Range (HDR), and, for the first time, on Low Dynamic Range (LDR) as well. Results are compared to previous approaches quantitatively as well as qualitatively in terms of re-renderings where illumination, material, view or shape are changed.