de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantitative super-resolution imaging with qPAINT

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons172959

Jungmann,  Ralf
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons186095

Woehrstein,  Johannes B.
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Jungmann, R., Avendano, M. S., Dai, M., Woehrstein, J. B., Agasti, S. S., Feiger, Z., et al. (2016). Quantitative super-resolution imaging with qPAINT. NATURE METHODS, 13(5), 439-442. doi:10.1038/NMETH.3804.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-E2B8-D
Abstract
Counting molecules in complexes is challenging, even with super-resolution microscopy. Here, we use the programmable and specific binding of dye-labeled DNA probes to count integer numbers of targets. This method, called quantitative points accumulation in nanoscale topography (qPAINT), works independently of dye photophysics for robust counting with high precision and accuracy over a wide dynamic range. qPAINT was benchmarked on DNA nanostructures and demonstrated for cellular applications by quantifying proteins in situ and the number of single-molecule FISH probes bound to an mRNA target.