de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Novel Mutation in RPL10 (Ribosomal Protein L10) Causes X-Linked Intellectual Disability, Cerebellar Hypoplasia, and Spondylo-Epiphyseal Dysplasia

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50369

Kalscheuer,  V. M.
Chromosome Rearrangements and Disease (Vera Kalscheuer), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50183

Haas,  S. A.
Gene Structure and Array Design (Stefan Haas), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Fulltext (public)

Zanni.pdf
(Publisher version), 396KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zanni, G., Kalscheuer, V. M., Friedrich, A., Barresi, S., Alfieri, P., Di Capua, M., et al. (2015). A Novel Mutation in RPL10 (Ribosomal Protein L10) Causes X-Linked Intellectual Disability, Cerebellar Hypoplasia, and Spondylo-Epiphyseal Dysplasia. Hum Mutat, 36(12), 1155-1158. doi:10.1002/humu.22860.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-3548-1
Abstract
RPL10 encodes ribosomal protein L10 (uL16), a highly conserved multifunctional component of the large ribosomal subunit, involved in ribosome biogenesis and function. Using X-exome resequencing, we identified a novel missense mutation (c.191C>T; p.(A64V)) in the N-terminal domain of the protein, in a family with two affected cousins presenting with X-linked intellectual disability, cerebellar hypoplasia, and spondylo-epiphyseal dysplasia (SED). We assessed the impact of the mutation on the translational capacity of the cell using yeast as model system. The mutation generates a functional ribosomal protein, able to complement the translational defects of a conditional lethal mutation of yeast rpl10. However, unlike previously reported mutations, this novel RPL10 missense mutation results in an increase in the actively translating ribosome population. Our results expand the mutational and clinical spectrum of RPL10 identifying a new genetic cause of SED and highlight the emerging role of ribosomal proteins in the pathogenesis of neurodevelopmental disorders.