de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons188136

Pérez,  Cristóbal
Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22903, USA;
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Locator
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Richardson, J. O., Pérez, C., Lobsiger, S., Reid, A. A., Temelso, B., Shields, G. C., et al. (2016). Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science, 351(6279), 1310-1313. doi:10.1126/science.aae0012.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-1743-0
Abstract
The nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported tunneling motions in water clusters, the geared motion involves the concerted breaking of two hydrogen bonds. Similar types of motion may be feasible in interfacial and confined water.