日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

LEED I/V determination of the structure of a MoO3 monolayer on Au(111): Testing the performance of the CMA-ES evolutionary strategy algorithm, differential evolution, a genetic algorithm and tensor LEED based structural optimization

MPS-Authors
/persons/resource/persons21973

Primorac,  Elena
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21774

Kuhlenbeck,  Helmut
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Paper_IV-LEED_MoO3-Mod.pdf
(プレプリント), 8MB

付随資料 (公開)
There is no public supplementary material available
引用

Primorac, E., Kuhlenbeck, H., & Freund, H.-J. (2016). LEED I/V determination of the structure of a MoO3 monolayer on Au(111): Testing the performance of the CMA-ES evolutionary strategy algorithm, differential evolution, a genetic algorithm and tensor LEED based structural optimization. Surface Science, 649, 90-100. doi:10.1016/j.susc.2016.01.030.


引用: https://hdl.handle.net/11858/00-001M-0000-002A-127C-B
要旨
The structure of a thin MoO3 layer on Au(111) with a c(4 × 2) superstructure was studied with LEED I/V analysis. As proposed previously (Quek et al., Surf. Sci. 577 (2005) L71), the atomic structure of the layer is similar to that of a MoO3 single layer as found in regular α-MoO3. The layer on Au(111) has a glide plane parallel to the short unit vector of the c(4 × 2) unit cell and the molybdenum atoms are bridge-bonded to two surface gold atoms with the structure of the gold surface being slightly distorted. The structural refinement of the structure was performed with the CMA-ES evolutionary strategy algorithm which could reach a Pendry R-factor of ∼0.044. In the second part the performance of CMA-ES is compared with that of the differential evolution method, a genetic algorithm and the Powell optimization algorithm employing I/V curves calculated with tensor LEED.