de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Distribution, sources and biogeochemistry of organic matter in a mangrove dominated estuarine system (Indian Sundarbans) during the pre-monsoon

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons73668

Malik,  Ashish
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry , Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62384

Gleixner,  Gerd
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Ray, R., Rixen, T., Baum, A., Malik, A., Gleixner, G., & Jana, T. K. (2015). Distribution, sources and biogeochemistry of organic matter in a mangrove dominated estuarine system (Indian Sundarbans) during the pre-monsoon. Estuarine, Coastal and Shelf Science, 167, 404-413. doi:10.1016/j.ecss.2015.10.017.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-73C2-6
Abstract
The sources and distribution of dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved inorganic carbon (DIC) in the Indian Sundarbans mangrove and Hooghly estuarine system were examined during the pre-monsoon (summer) 2014. DOC is the dominant form of organic matter (OM) in the studied estuarine waters and represents a mixture of mangrove and riverine sources. Microbial degradation of land derived OM results in a high pCO2 in the Hooghly estuarine waters while enrichment in d13C-DIC ascribes to CO2 uptake by phytoplankton in the Sundarbans water. Higher d15N in the particulate organic nitrogen (PON) of the mangrove and marine zone could be associated with enhanced phytoplankton production sustained by nitrate from mangrove derived OM decomposition and/or nitrate imported from the Bay of Bengal. Low organic carbon contents and elemental ratios (TN/TOC) indicate an intense mineralization and transformation of OM in the sediments, resulting insignificantly different OM compositions compared to those of the three major sources: land derived OM, mangrove leaf litter (Avicennia marina) and in situ phytoplankton production.