de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Building Statistical Shape Spaces for 3D Human Modeling

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45196

Pishchulin,  Leonid
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45383

Schiele,  Bernt
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1503.05860.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pishchulin, L., Wuhrer, S., Helten, T., Theobalt, C., & Schiele, B. (2015). Building Statistical Shape Spaces for 3D Human Modeling. Retrieved from http://arxiv.org/abs/1503.05860.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0029-4B26-F
Zusammenfassung
Statistical models of 3D human shape and pose learned from scan databases have developed into valuable tools to solve a variety of vision and graphics problems. Unfortunately, most publicly available models are of limited expressiveness as they were learned on very small databases that hardly reflect the true variety in human body shapes. In this paper, we contribute by rebuilding a widely used statistical body representation from the largest commercially available scan database, and making the resulting model available to the community (visit http://humanshape.mpi-inf.mpg.de). As preprocessing several thousand scans for learning the model is a challenge in itself, we contribute by developing robust best practice solutions for scan alignment that quantitatively lead to the best learned models. We make implementations of these preprocessing steps also publicly available. We extensively evaluate the improved accuracy and generality of our new model, and show its improved performance for human body reconstruction from sparse input data.