Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

New fine structures resolved at the ELNES Ti-L2,3 edge spectra of anatase and rutile: comparison between experiment and calculation

MPG-Autoren
/persons/resource/persons182739

Irsen,  S.
Electron Microscopy and Analytics, Center of Advanced European Studies and Research (caesar), Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cheynet, M., Pokrant, S., Irsen, S., & Krüger, P. (2010). New fine structures resolved at the ELNES Ti-L2,3 edge spectra of anatase and rutile: comparison between experiment and calculation. Ultramicroscopy, 110(8), 1046-1053.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-60F3-C
Zusammenfassung
Anatase and rutile Ti-L-2,L-3 edge spectra were measured in electron energy loss spectroscopy (EELS) using a transmission electron microscope (TEM) coupled to a CEOS Cs-probe corrector, an omega-type monochromator and an in-column omega-type energy filter fully corrected for 2nd order aberrations. Thanks to the high energy resolution, high electron probe current and high stability achieved under this instrumental configuration, new fine structures, never reported before, were resolved at the L3 band of both rutile and anatase. The data suggest that new peaks also exist in the L-2 e(g) band. The experimental spectra are compared with multichannel multiple scattering (MMS) calculations. Good agreement is found for number, energy position and intensity of the newly resolved spectral features. Up to now, the L3 eg band splitting could not be well described by theory not even through the crystal field multiplet approach. We show that the L3 eg band splitting is due to long range band structure effects, contrary to the usual interpretations in terms of local ligand field or near-neighbour hybridization effects. (C) 2010 Elsevier B.V. All rights reserved