Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Conductance of a single flexible molecular wire composed of alternating donor and acceptor units

MPG-Autoren
/persons/resource/persons37451

Nacci,  Christophe
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Universität Graz;

/persons/resource/persons21573

Grill,  Leonhard
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Universität Graz;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2175829.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nacci, C., Ample, F., Bleger, D., Hecht, S., Joachim, C., & Grill, L. (2015). Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nature Communications, 9(7): 7397. doi:10.1038/ncomms8397.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-150B-D
Zusammenfassung
Molecular-scale electronics is mainly concerned by understanding charge transport through individual molecules. A key issue here is the charge transport capability through a single—typically linear—molecule, characterized by the current decay with increasing length. To improve the conductance of individual polymers, molecular design often either involves the use of rigid ribbon/ladder-type structures, thereby sacrificing for flexibility of the molecular wire, or a zero band gap, typically associated with chemical instability. Here we show that a conjugated polymer composed of alternating donor and acceptor repeat units, synthesized directly by an on-surface polymerization, exhibits a very high conductance while maintaining both its flexible structure and a finite band gap. Importantly, electronic delocalization along the wire does not seem to be necessary as proven by spatial mapping of the electronic states along individual molecular wires. Our approach should facilitate the realization of flexible ‘soft’ molecular-scale circuitry, for example, on bendable substrates.