de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Counting Straight-Edge Tringulation of Planar Point Sets

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45269

Ray,  Saurabh
Algorithms and Complexity, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ray, S. (2005). Counting Straight-Edge Tringulation of Planar Point Sets. Master Thesis, Universität des Saarlandes, Saarbrücken.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0027-D757-D
Zusammenfassung
A triangulation of a finite set S of points in R2 is a maximal set of line segments with disjoint interiors whose end points are in S. A set of points in the plane can have many triangulations and it is known that a set of n points always has more than (2.33n)[7] and fewer than 59n-(log(n)) [4] triangulation. However, these bounds are not tight. Also, counting the number of triangulation of a given a set of points efficiently remains an open problem. The fastest method so far is based on the so called t-path method [5] and it was the first algorithm having a running time sublinear on the number of triangulations counted. In this thesis, we consider a slightly different approach to counting the number of triangulations. Although we are unable to prove any non-trivial result about our algorithm yet, empirical results show that the running time of our algorithm for a set of n points is o(nlog2nT(n)) where T(n) is the number of triangulations counted, and in practice it performs much better than the earlier algorithm.