de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Stereo Vision under Adverse Conditions

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons188659

Reznitskii,  Maxim
International Max Planck Research School, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45383

Schiele,  Bernt
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Reznitskii, M. (2013). Stereo Vision under Adverse Conditions. Master Thesis, Universität des Saarlandes, Saarbrücken.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0026-CC7E-7
Zusammenfassung
Autonomous Driving benefits strongly from a 3D reconstruction of the environment in real-time, often obtained via stereo vision. Semi-Global Matching (SGM) is a popular�method of choice for solving this task and is already in use for production vehicles. Despite the enormous progress in the field and the high performance of modern methods, one key challenge remains: stereo vision in automotive scenarios during difficult weather or illumination conditions. Current methods generate strong temporal noise,�many disparity outliers, and false positives on a segmentation level. This work addresses these issues by formulating a temporal prior and a scene prior and applying them to SGM. For image sequences captured on a highway during rain, during snowfall, or in low light, these priors significantly improve the object detection rate while reducing the false positive rate. The algorithm also outperforms the�ECCV Robust�Vision Challenge winner, iSGM.�