de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons125354

Sachtleber,  Michael I.
Microscopy and Diffraction, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons125501

Zhao,  Zisu
Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons125350

Roters,  Franz
Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons125491

Zaefferer,  Stefan
Microscopy and Diffraction, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Raabe, D., Sachtleber, M. I., Zhao, Z., Roters, F., & Zaefferer, S. (2001). Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Materialia, 49(17), 3433-3441. doi:10.1016/S1359-6454(01)00242-7.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-E430-3
Zusammenfassung
A polycrystalline aluminum sample with a quasi-2D single layer of coarse grains is plastically deformed in a channel die plane strain set-up at ambient temperature and low strain rate. The microtexture of the specimen is determined by analysis of electron back scattering patterns obtained in a scanning electron microscope. The spatial distribution of the plastic microstrains at the sample surface is determined by measurement of the 3D plastic displacement field using a photogrametric pixel-based pattern recognition algorithm. The initial microtexture is mapped onto a finite element mesh. Continuum and crystal plasticity finite element simulations are conducted using boundary conditions which approximate those of the channel die experiments. The experimental and simulation data are analyzed with respect to macromechanical and micromechanical effects on grain-scale plastic heterogeneity. The most important contributions among these are the macroscopic strain profile (friction), the kinematic hardness of the crystals (individual orientation factors), the interaction with neighbor grain, and grain boundary effects, Crystallographic analysis of the data reveals two important points. First, the macroscopic plastic strain path is not completely altered by the crystallographic texture, but modulated following soft crystals and avoiding hard crystals. Second, grain-scale mechanisms are strongly superimposed by effects arising from the macroscopic profile of strain, The identification of genuine interaction mechanisms at this scale therefore requires procedures to filter out macroscopically induced strain gradients. As an analysis tool, the paper introduces a micromechanical Taylor factor, which differs from the macromechanical Taylor factor by the fact that crystal shear is normalized by the local rather than the global von Mises strain. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.