de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Line-robust statistics for continuous gravitational waves: safety in the case of unequal detector sensitivities

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons41554

Keitel,  David
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40534

Prix,  Reinhard
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1409.2696.pdf
(Preprint), 2MB

CQG_32_3_035004.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Keitel, D., & Prix, R. (2015). Line-robust statistics for continuous gravitational waves: safety in the case of unequal detector sensitivities. Classical and quantum gravity, 32: 035004. doi:10.1088/0264-9381/32/3/035004.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-D3E0-D
Zusammenfassung
The multi-detector F-statistic is close to optimal for detecting continuous gravitational waves (CWs) in Gaussian noise. However, it is susceptible to false alarms from instrumental artefacts, for example quasi-monochromatic disturbances ('lines'), which resemble a CW signal more than Gaussian noise. In a recent paper [Keitel et al 2014, PRD 89 064023], a Bayesian model selection approach was used to derive line-robust detection statistics for CW signals, generalising both the F-statistic and the F-statistic consistency veto technique and yielding improved performance in line-affected data. Here we investigate a generalisation of the assumptions made in that paper: if a CW analysis uses data from two or more detectors with very different sensitivities, the line-robust statistics could be less effective. We investigate the boundaries within which they are still safe to use, in comparison with the F-statistic. Tests using synthetic draws show that the optimally-tuned version of the original line-robust statistic remains safe in most cases of practical interest. We also explore a simple idea on further improving the detection power and safety of these statistics, which we however find to be of limited practical use.