Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stark Effect in the Benzene Dimer

MPG-Autoren
/persons/resource/persons22077

Schnell,  Melanie
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany;

/persons/resource/persons39203

Bunker,  Phil
Steacie Laboratory, National Research Council of Canada;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21614

Helden,  Gert von
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21859

Meijer,  Gerard
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schnell, M., Bunker, P., Helden, G. v., Grabow, J.-U., Meijer, G., & van der Avoird, A. (2013). Stark Effect in the Benzene Dimer. The Journal of Physical Chemistry A, 117(50), 13775-13778. doi:10.1021/jp408076q.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-B9CC-D
Zusammenfassung
Ab initio calculations of the six-dimensional intermolecular potential have shown the benzene dimer to be an asymmetric top molecule at equilibrium with one benzene moiety forming the “stem” and the other a “tilted cap” in a T-shaped structure. Internal rotation of the cap about its C6 axis is essentially free; the barriers for cap tilting and for internal rotation of the stem about its C6 axis are hindered by successively higher barriers. In previous work we have validated these theoretical results using Fourier transform microwave spectroscopy in conjunction with dynamics calculations. We have also measured the Stark effect, and despite the fact that the equilibrium structure is that of an asymmetric top, the assigned transitions involving K = 0 exhibit a second-order Stark effect whereas those involving K = 1 exhibit a first-order Stark effect. This is typical for a symmetric-top molecule, but anomalous for an asymmetric-top molecule. We use symmetry arguments to explain how this asymmetric-top molecule can have a first-order Stark effect in certain states that have excitation of cap internal rotation. Cap internal rotation is essentially the twisting of the monomers relative to each other about the intermolecular axis, and such torsional motion occurs in other asymmetric top dimers such as benzene–CO and benzene–H2O. These latter dimers will also have levels that exhibit a first-order Stark effect, which we can explain using our symmetry arguments.