de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Dynamic Probabilistic Volumetric Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons140746

Ulusoy,  Osman
Dept. Perceiving Systems, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ulusoy, O., Biris, O., & Mundy, J. L. (2013). Dynamic Probabilistic Volumetric Models. In 2013 IEEE International Conference on Computer Vision (ICCV 2013) (pp. 505-512). IEEE. doi:10.1109/ICCV.2013.68.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-E356-8
Zusammenfassung
This paper presents a probabilistic volumetric framework for image based modeling of general dynamic 3-d scenes. The framework is targeted towards high quality modeling of complex scenes evolving over thousands of frames. Extensive storage and computational resources are required in processing large scale space-time (4-d) data. Existing methods typically store separate 3-d models at each time step and do not address such limitations. A novel 4-d representation is proposed that adaptively subdivides in space and time to explain the appearance of 3-d dynamic surfaces. This representation is shown to achieve compression of 4-d data and provide efficient spatio-temporal processing. The advances of the proposed framework is demonstrated on standard datasets using free-viewpoint video and 3-d tracking applications.