de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

MoSh: Motion and Shape Capture from Sparse Markers

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75788

Loper,  Matthew
Dept. Perceiving Systems, Max Planck Institute for Intelligent Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons140742

Mahmood,  Naureen
Dept. Perceiving Systems, Max Planck Institute for Intelligent Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75293

Black,  Michael J.
Dept. Perceiving Systems, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Loper, M., Mahmood, N., & Black, M. J. (2014). MoSh: Motion and Shape Capture from Sparse Markers. ACM Transactions on Graphics, 33(6), 220:1-220-13. doi:10.1145/2661229.2661273.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-C4FB-E
Zusammenfassung
Marker-based motion capture (mocap) is widely criticized as producing lifeless animations. We argue that important information about body surface motion is present in standard marker sets but is lost in extracting a skeleton. We demonstrate a new approach called MoSh (Motion and Shape capture), that automatically extracts this detail from mocap data. MoSh estimates body shape and pose together using sparse marker data by exploiting a parametric model of the human body. In contrast to previous work, MoSh solves for the marker locations relative to the body and estimates accurate body shape directly from the markers without the use of 3D scans; this effectively turns a mocap system into an approximate body scanner. MoSh is able to capture soft tissue motions directly from markers by allowing body shape to vary over time. We evaluate the effect of different marker sets on pose and shape accuracy and propose a new sparse marker set for capturing soft-tissue motion. We illustrate MoSh by recovering body shape, pose, and soft-tissue motion from archival mocap data and using this to produce animations with subtlety and realism. We also show soft-tissue motion retargeting to new characters and show how to magnify the 3D deformations of soft tissue to create animations with appealing exaggerations.