de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons96384

Malghani,  Saadatullah
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry , Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons127169

Jüschke,  Elisabeth
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons101553

Baumert,  Julia
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62585

Thuille,  Angelika
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62589

Trumbore,  Susan E.
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62384

Gleixner,  Gerd
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Malghani, S., Jüschke, E., Baumert, J., Thuille, A., Antonietti, M., Trumbore, S. E., et al. (2015). Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study. Biology and Fertility of Soils, 51(1), 123-134. doi:10.1007/s00374-014-0980-1.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-A958-1
Abstract
Soil amendment with hydrochar produced by hydrothermal carbonization of biomass is suggested as a simple, cheap, and effective method for increasing soil C. We traced C derived from corn silage hydrochar (δ13C of −13‰) added to “coarse” and “fine” textured soils (δ13C of −27‰for native soil C (SOC)) over two cropping seasons. Respiration rates increased in both soils (p<0.001) following hydrochar addition, and most of this extra respiration was derived from hydrochar C. Dissolved losses accounted for ~5 % of added hydrochar C (p<0.001). After 1 year, 33±8 % of the added hydrochar C was lost from both soils. Decomposition rates for the roughly two thirds of hydrochar that remained were very low, with half-life for less estimated at 19 years. In addition, hydrochar-amended soils preserved 15±4 % more native SOC compared to controls (negative priming). Hydrochar negatively affected plant height (p<0.01) and biomass (p<0.05) in the first but not the second crop grown on both soils. Our results confirm previous laboratory studies showing that initially, hydrochar decomposes rapidly and limits plant growth. However, the negative priming effect and persistence of added hydrochar C after 1 year highlight its soil C sequestration potential, at least on decadal timescales.