English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses

MPS-Authors
/persons/resource/persons123519

Wu,  Ling-Gang
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92286

Borst,  J. Gerard G.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wu, L.-G., Westenbroek, R. E., Borst, J. G. G., Catterall, W. A., & Sakmann, B. (1999). Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. The Journal of Neuroscience, 19, 726-736. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9880593.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-A42F-5
Abstract
We studied how Ca2+ influx through different subtypes of Ca2+ channels couples to release at a calyx-type terminal in the rat medial nucleus of the trapezoid body by simultaneously measuring the presynaptic Ca2+ influx evoked by a single action potential and the EPSC. Application of subtype-specific toxins showed that Ca2+ channels of the P/Q-, N-, and R-type controlled glutamate release at a single terminal. The Ca2+influx through the P/Q-type channels triggered release more effectively than Ca2+ influx through N- or R-type channels. We investigated mechanisms that contributed to these differences in effectiveness. Electrophysiological experiments suggested that individual release sites were controlled by all three subtypes of Ca2+ channels. Immunocytochemical staining indicated, however, that a substantial fraction of N- and R-type channels was located distant from release sites. Although these distant channels contributed to the Ca2+ influx into the terminal, they may not contribute to release. Taken together, the results suggest that the Ca2+ influx into the calyx via N- and R-type channels triggers release less effectively than that via P/Q-type because a substantial fraction of the N- and R-type channels in the calyx is localized distant from release sites