de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The neuronal architecture of the mushroom body provides a logic for associative learning

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons39094

Tanimoto,  Hiromu
Max Planck Research Group: Behavioral Genetics / Tanimoto, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T.-T.-B., et al. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. ELIFE, 3: e04577. doi:10.7554/eLife.04577.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-B5F1-6
Zusammenfassung
We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of similar to 2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell-MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory.