English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage

MPS-Authors
/persons/resource/persons93961

Köster,  Helmut Joachim
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Köster, H. J., Baur, D., Uhl, R., & Hell, S. W. (1999). Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophysical Journal, 77(4), 2226-2236. doi:10.1016/S0006-3495(99)77063-3.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-A10B-B
Abstract
The signal and limitations of calcium florescence imaging using nonresonant multiphoton absorption of near-infrared femto- and picosecond laser pulses were examined. The fluorescence changes of various Ca2+-indicators induced by transient increases of the intradendritic calcium concentration were evaluated by evoking physiological activity in neocortical neurons in rat brain slices. Photodamage was noticeable as irreversible changes in the parameters describing the calcium fluorescence transients. At higher two-photon excitation rates, a great variety of irregular functional and structural alterations occurred. Thus, signal and observation time were limited by phototoxic effects. At lower excitation rates, photodamage accumulated linearly with exposure time. Femtosecond and picosecond laser pulses were directly compared with respect to this cumulative photodamage. The variation of the pulse length at a constant two-photon excitation rate indicated that a two-photon excitation mechanism is mainly responsible for the cumulative photodamage within the investigated window of 75 fs to 3.2 ps. As a direct consequence, at low excitation rates, the same image quality is achieved irrespective of whether two-photon Ca2+-imaging is carried out with femto- or picosecond laser pulses.