de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons92766

Egger,  Veronica
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons92876

Feldmeyer,  Dirk
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Egger, V., Feldmeyer, D., & Sakmann, B. (1999). Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nature Neuroscience, 2(12), 1098-1105. doi:10.1038/16026.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-9C62-C
Abstract
Paired whole-cell voltage recordings were made from synaptically connected spiny stellate neurons in layer 4 of the barrel field in young (P14) rat somatosensory cortex. When postsynaptic action potentials (APs) followed each of 5 presynaptic APs in a 10- or 20-Hz train by less than 25 ms, subsequent unitary EPSP amplitudes were persistently reduced. Induction of long-term depression (LTD) depended on activation of group II metabotropic glutamate receptors, but not on NMDA or AMPA receptors. Reducing postsynaptic increases in intracellular calcium ([Ca2+]i) by intracellular loading with a fast- (BAPTA) or a slow- (EGTA) acting Ca2+ buffer blocked synaptic depression. Analysis of EPSP failures suggested mediation of LTD by a reduction in release probability. We propose a mechanism by which coincident activity results in long-lasting reduction of synaptic efficacy between synaptically connected neurons